

SSH Communications Security Corp

SSH Cryptographic Library
Software Version 1.2.0

FIPS 140-2 Non-Proprietary
Security Policy

Level 1 Validation
Document Version 1.6

September 2004

© Copyright 2004 SSH Communications Security Corp
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Table of Contents

1. INTRODUCTION... 3

1.1. PURPOSE.. 3
1.2. REFERENCES .. 3
1.3. DOCUMENT ORGANIZATION .. 3

2. SSH CRYPTOGRAPHIC LIBRARY SOFTWARE VERSION 1.2.0 5

2.1. OVERVIEW .. 5
2.2. CRYPTOGRAPHIC MODULE ... 5
2.3. MODULE INTERFACE .. 6
2.4. ROLES AND SERVICES.. 7
2.5. PHYSICAL SECURITY .. 8
2.6. CRYPTOGRAPHIC KEY MANAGEMENT .. 9

2.6.1. Key Generation ... 11
2.6.2. Key Establishment... 11
2.6.3. Key Entry and Output .. 11
2.6.4. Key Storage... 11
2.6.5. Key Zeroization ... 11

2.7. SELF-TESTS.. 12
2.8. DESIGN ASSURANCE.. 13
2.9. MITIGATION OF OTHER ATTACKS... 13

3. SECURE OPERATION... 14

3.1. Crypto Officer Guidance... 15
3.2. User Guidance ... 15

4. APPENDIX A – FUNCTIONS ... 16

5. APPENDIX B – ACRONYM LIST ... 20

© Copyright 2004 SSH Communications Security Corp Page 2 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

1. Introduction
1.1. Purpose

This is a non-proprietary Cryptographic Module Security Policy for the
SSH Cryptographic Library Software Version 1.2.0 from SSH
Communications Security Corp. This security policy describes how SSH
Cryptographic Library Software Version 1.2.0 meets the security
requirements of FIPS 140-2 and how to run the module in a secure FIPS
140-2 mode. This policy was prepared as part of the Level 1 FIPS 140-2
validation of the module.

FIPS 140-2 (Federal Information Processing Standards Publication 140-2
— Security Requirements for Cryptographic Modules) details the U.S.
Government requirements for cryptographic modules. More information
about the FIPS 140-2 standard and validation program is available on the
NIST website at http://csrc.nist.gov/cryptval/.

The SSH Cryptographic Library Software Version 1.2.0 is referred to in
this document as the Cryptographic Library or the module.

1.2. References
This document deals only with operations and capabilities of the module in
the technical terms of a FIPS 140-2 cryptographic module security policy.
More information is available on the module from the following sources:

• The SSH Communications Security Corp website
(http://www.ssh.com/) contains information on the full line of products
from SSH Communications Security Corp.

• The NIST Validated Modules website

(http://csrc.ncsl.nist.gov/cryptval/) contains contact information for
answers to technical or sales-related questions for the module.

1.3. Document Organization
The Security Policy document is one document in a complete FIPS 140-2
Submission Package. In addition to this document, the complete
Submission Package contains:

 Vendor Evidence document
 Other supporting documentation as additional references

This Security Policy and the other validation submission documentation
were produced by Corsec Security, Inc. under contract to SSH
Communications Security Corp. With the exception of this Non-
Proprietary Security Policy, the FIPS 140-2 Validation Documentation is
proprietary to SSH Communications Security Corp and is releasable only

© Copyright 2004 SSH Communications Security Corp Page 3 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

http://csrc.nist.gov/cryptval/
http://www.ssh.com/
http://csrc.ncsl.nist.gov/cryptval/

under appropriate non-disclosure agreements. For access to these
documents, please contact SSH Communications Security Corp.

© Copyright 2004 SSH Communications Security Corp Page 4 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

2. SSH CRYPTOGRAPHIC LIBRARY SOFTWARE VERSION 1.2.0
2.1. Overview

The SSH Cryptographic Library Software Version 1.2.0 was developed by
SSH Communications Security Corp, one of the world’s leading
developers of Internet-based data security technologies and solutions.
The Cryptographic Library was designed to be used with computer
security applications such as Secure Shell, and is available on its own, as
a DLL or a shared library, or as part of SSH Secure Shell.

The Cryptographic Library has been designed to be efficient, simple to
use, and easy to extend. It includes a C-language Crypto API and Math
API that provide security applications with cryptographic functions, utilizing
common cryptographic algorithms, including AES, Triple-DES, DSA, and
RSA.

The Cryptographic Library is divided into the following functional
components:

• Cryptographic random number generators

• Cryptographic hash functions

• Message authentication code (MAC) functions

• Symmetric key encryption/decryption algorithms

• Public key cryptography and digital signatures

• Algebraic group management

• Key agreement methods

2.2. Cryptographic Module
The SSH Cryptographic Library Software Version 1.2.0 is classified as a
multi-chip standalone module for FIPS 140-2 purposes. As such, the
module must be tested upon a particular operating system and computer
platform. In particular, since the module is available as a DLL or shared
library, it is to be used on a standard PC running a current Windows,
Solaris, HP-UX, or AIX operating system in single user mode.

Logically, the cryptographic module is composed of a single software
library. Physically, the cryptographic boundary of the module is the PC
case, which physically encloses the complete set of hardware and
software, including the Cryptographic Library and the operating system.

© Copyright 2004 SSH Communications Security Corp Page 5 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

The module is intended to meet overall FIPS 140-2 level 1 requirements
(see Table 1).

Section Section Title Level
1 Cryptographic Module Specification 1
2 Cryptographic Module Ports and

Interfaces
1

3 Roles, Services, and Authentication 1
4 Finite State Model 1
5 Physical Security 1
6 Operational Environment 1
7 Cryptographic Key Management 1
8 EMI/EMC 3
9 Self-tests 4
10 Design Assurance 1
11 Mitigation of Other Attacks N/A

Table 1 – Intended Level Per FIPS 140-2 Section

2.3. Module Interface
As a multi-chip standalone module being tested on a standard PC, the
module’s physical interfaces consist of the keyboard port, mouse port,
monitor port, CD-ROM drive, floppy disk, serial ports, USB ports, parallel
ports, network ports, and power plug. All of these physical ports are
mapped into the logical, software interfaces of the module and then into
logical, FIPS140-2 interfaces, as described in the following table:

FIPS 140-2 Logical
Interface

Logical Interface Standard PC Physical
Port

Data Input Interface Function calls that accept,
as their arguments, data to
be used or processed by
the module

Keyboard, mouse, CD-
ROM drive, floppy disk,
and
serial/USB/parallel/network
ports

Data Output Interface Arguments for a function
that specify where the
result of a function is
stored

Floppy disk, monitor, and
serial/USB/parallel/network
ports

Control Input Interface Function calls utilized to
initiate the module and the
function calls used to
control the operation of the
module

Keyboard, mouse, CD-
ROM drive, floppy disk,
and
serial/USB/parallel/network
ports

Status Output Interface Return values Floppy disk, monitor, and
serial/USB/parallel/network
ports

Power Interface Not Applicable Power plug
© Copyright 2004 SSH Communications Security Corp Page 6 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Table 2 – FIPS 140-2 Logical Interfaces

The logical interfaces are separated through the API used to access the
module. Data Inputs are certain function calls, including specific
arguments to a function. These specific arguments are pointers to input
data, such as data to be signed or encrypted. Control Inputs are also
certain function calls, including specific arguments. However, these
arguments control how the function is executed and specify, for example,
which key or algorithm to use. The set of Data Input functions and the set
of Control Input functions are mutually exclusive. The result of a function is
Data Output. Some functions include an argument that specifies where the
result (Data Output) should be stored. The return values of the
Cryptographic Library functions are Status Outputs.

2.4. Roles and Services
The Cryptographic Library meets all FIPS 140-2 level 1 requirements for
Roles and Services, implementing both a User role and a Crypto Officer
role. There is no Maintenance role.

As allowed by FIPS 140-2, the Cryptographic Library does not support
authentication for these roles. Roles are implicitly selected through the use
of functions, and only one role may be active at a time.

The Crypto Officer is responsible for initializing the module and switching
the mode of operation to FIPS mode after initialization. After the
successful switch to FIPS mode, both the Crypto Officer and the User will
be able to utilize the cryptographic functionality of the module. In fact, they
will have the same cryptographic functions available. These functions are
grouped into the different types of services provided by the module (see
Appendix A). The services available to the Crypto Officer and User role
are provided in the table below:

Role Service CSPs Accessed
Crypto
Officer

Initialize Cryptographic
Library

-

Crypto
Officer

Certification mode
management

-

Crypto
Officer/User

Perform self-tests Integrity Test Key

Crypto
Officer/User

Return state of module -

Crypto
Officer/User

Free strings allocated
by module

-

Crypto
Officer/User

Convert returned error
to user-printable strings

-

Crypto
Officer/User

Get Cryptographic
Library version

-

© Copyright 2004 SSH Communications Security Corp Page 7 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Crypto
Officer/User

Get progress
information

-

Crypto
Officer/User

Generate random
numbers using the
chosen PRNG

Seed

Crypto
Officer/User

Generate random
numbers using the
internal RNG

Seed

Crypto
Officer/User

Compute Hash -

Crypto
Officer/User

Compute MAC HMAC SHA-1 Symmetric
Key

Crypto
Officer/User

Encrypt/decrypt using
symmetric algorithms

DES, Triple-DES, or AES
Symmetric Key

Crypto
Officer/User

Create and manipulate
public and private keys

RSA or DSA Private Key;
Seed (if keys are
generated); DH Secret

Crypto
Officer/User

Import and export
private keys, public
keys, groups, and
randomizers

RSA or DSA Private Key;
DH Secret

Crypto
Officer/User

Sign and verify digital
signatures

RSA or DSA Private Key

Crypto
Officer/User

Generate and
manipulate algebraic
groups

Seed (if groups are
generated)

Crypto
Officer/User

Precompute
randomizers for groups

Seed

Crypto
Officer/User

Precompute data for
private key, public key
or group

-

Crypto
Officer/User

Establish shared secret
using Diffie-Hellman

Seed (if Secret is
generated); DH Shared;
DH Shared Secret

Crypto
Officer/User

Zeroize Cryptographic
Library

All

Crypto
Officer/User

Uninitialize
Cryptographic Library

-

Table 3 – Roles and Services

2.5. Physical Security
The Cryptographic Library is a software module tested for use on a
standard PC running a current Windows, Solaris, HP-UX, or AIX operating
system in single user mode. The module was tested against FIPS 140-2

© Copyright 2004 SSH Communications Security Corp Page 8 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

level 1 requirements on a standard PC running Windows XP, Solaris 8,
HP-UX 11i, and AIX 4.3.3. The platform provides production grade
equipment, industry-standard passivation, and a production grade
enclosure.

In addition to the tested platforms, Cryptographic Library supports
Windows 2000, Windows 2003 Server, Solaris 9, HP-UX 10.20 and
RedHat Enterprise Linux versions 2.1 and 3.0.

Although the Cryptographic Library consists entirely of software, the FIPS
140-2 tested platform is a standard PC, which has been tested for and
meets applicable FCC EMI and EMC requirements for business use as
defined by 47 Code of Federal Regulations, Part15, Subpart B.

2.6. Cryptographic Key Management
The module implements the following FIPS-approved algorithms:

Type Algorithm Standard
RSA Digital Signature (Vendor Affirmed) PKCS #1 Asymmetric
DSA (Cert#82) FIPS 186-2
AES (ECB, CBC, CFB, OFB, CTR)
(Cert#52)

FIPS 197

3-Key Triple-DES (TECB, TCBC,
TCFB64, TOFB) (Cert#162)

FIPS 46-3

Symmetric

DES (ECB, CBC, CFB, OFB – for legacy
use only) (Cert#207)

FIPS 46-3

Hash SHA-1 (Cert#145) FIPS 180-1
MAC HMAC SHA-1 (Cert#145, Vendor

Affirmed)
FIPS 198

Annex A.2.4 of ANSI X9.31 (Triple- DES) ANSI X9.31
Annex A.4 of ANSI X9.62 (SHA-1) ANSI X9.62
Appendix 3.1 of FIPS 186-2 (SHA-1) FIPS 186-2

PRNG

Appendix 3.2 of FIPS 186-2 (SHA-1) FIPS 186-2
Table 4 – FIPS-Approved Algorithms supported by the Module

The module implements the following non-FIPS-approved algorithms:

• MD5
• SHA-256
• HMAC MD5
• HMAC SHA-1 96
• CAST-128
• Blowfish
• Twofish

© Copyright 2004 SSH Communications Security Corp Page 9 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

• Arcfour
• RSA (PKCS#1 v1 and v1.5, encryption/decryption)
• RSA (PKCS#1, MD5 signatures)
• Diffie-Hellman

The following table summarizes the module’s CSPs:

Type of CSP Generation Main Usage
DES, Triple-
DES, AES,
and HMAC
SHA-1
Symmetric
Keys

External – entered through type-
specific allocation functions

MAC function
(HMAC SHA-1)
and symmetric
encryption/
decryption (AES,
DES, Triple-
DES)

RSA Private
Key (D)

Internal – using
ssh_private_key_generate or
ssh_private_key_define
or
External – entered through
ssh_pk_import

RSA: signature
generation

DSA Secret
Key (X)

Internal – using
ssh_private_key_generate or
ssh_private_key_define
or
External – entered through
ssh_pk_import

DSA: signature
generation and
required to
compute Public
Key Y

DH Secret Internal –
ssh_pk_group_dh_setup_async or
ssh_pk_group_generate_randomizer

Diffie-Hellman:
required to derive
public value and
shared secret

DH Shared
Secret

Internal –
ssh_pk_group_dh_agree_async

Create
symmetric keys
(outside the
module)

24-byte Triple-
DES Key

External – supplied noise through
ssh_random_add_noise, with the
output of the function hashed using
SHA-256

Seed key for
ANSI X9.31
PRNG

64-byte Seed External – supplied noise through
ssh_random_add_light_noise or
ssh_random_add_entropy

ANSI X9.62 and
FIPS 186-2
PRNGs

Integrity Test
Key

External – hard-coded HMAC key
generated by SSH

Software integrity
test using HMAC
SHA-1

© Copyright 2004 SSH Communications Security Corp Page 10 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Table 5 – Summary of the Module’s CSPs

The User and Crypto Officer have read and write access to all non-
persistently stored CSPs, and only read access to the hard-coded integrity
test key.

All CSPs remain in the process space of a single User, with the operating
system protecting memory and process space from unauthorized access.

2.6.1. Key Generation

The only keys that can be generated by the module are public/private keys
for RSA and DSA signature schemes, and the secret and public values for
the Diffie-Hellman protocol. FIPS-approved PRNGs are used to generate
these keys.

2.6.2. Key Establishment

The module uses Diffie-Hellman to agree upon shared secrets (not keys).
These shared secrets are exported out of the module without further
processing. (Applications can use these exported shared secrets to
externally create symmetric keys.)

2.6.3. Key Entry and Output

CSPs are entered into and output from the module electronically.
Symmetric keys are entered into the module through the allocation
functions used to allocate and initialize a MAC or (symmetric) Cipher
context. Symmetric keys are not output from the module. When the
context is no longer needed, a free function is called to free the context
and to zeroize any key-sensitive material in the context. Private keys,
public keys, and Diffie-Hellman’s secret and public value can be entered
into and output from the module using the uniform import and export
interface. All private keys exported from the module must be encrypted
using a FIPS-approved algorithm. Imported private keys may be
encrypted.

2.6.4. Key Storage

The module employs hard-coded keys for the software integrity test and
the known answer tests. All other CSPs are stored as plaintext in RAM
and are generated or entered into the module while its API is being
exercised by the User or Crypto Officer.

2.6.5. Key Zeroization

Non-persistently stored keys can be zeroized using either the master
zeroize function or type-specific zeroize functions. Hard-coded keys are
zeroized when the Cryptographic Library is deleted from the system.

© Copyright 2004 SSH Communications Security Corp Page 11 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

2.7. Self-Tests
The Cryptographic Library runs power-up and conditional self-tests to
verify that it is functioning properly. The power-up self-tests are performed
during initialization. Conditional self-tests are executed whenever specific
conditions are met. The module implements the following self-tests:

Software Integrity Test: The module employs a software integrity test in
the form of an HMAC SHA-1.

Cryptographic Algorithm KATs: Known Answer Tests (KATs) are run at
power-up for the following algorithms:

• AES KAT (ECB)

• Triple-DES KAT (ECB, CBC, OFB, and CFB)

• DES KAT (ECB, CBC, OFB, and CFB)

• SHA-1 KAT

• HMAC SHA-1 KAT

• PRNG KAT

Pair-Wise Consistency Checks: Pair-wise consistency checks are
performed at power-up and after RSA, DSA and Diffie-Hellman keys have
been generated. The following pair-wise consistency checks are
implemented:

• RSA pair-wise consistency check

• DSA pair-wise consistency check

• Diffie-Hellman pair-wise consistency check

Critical Function Test: At power-up the module runs the math library
self-tests.

Statistical Random Number generator Tests:

• The monobit test

• The poker test

• The runs test

• The long runs test

© Copyright 2004 SSH Communications Security Corp Page 12 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Continuous Random Number Generator Test: This test is performed to
detect failure of the module’s random number generator.

If any of these self-tests fail, the module will enter the error state. The
error condition can be cleared by releasing all crypto object instances and
successfully executing the uninitialize function.

2.8. Design Assurance
SSH Communications Security Corp manages and records source code
and associated documentation files using the Concurrent Versions System
(CVS).

2.9. Mitigation of Other Attacks
The Cryptographic Library does not employ security mechanisms to
mitigate specific attacks.

© Copyright 2004 SSH Communications Security Corp Page 13 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

3. SECURE OPERATION
The Cryptographic Library meets Level 1 requirements for FIPS 140-2.
The sections below describe how to place and keep the module in FIPS-
approved mode of operation.

The module has two modes of operation: non-FIPS mode and FIPS mode.
Non-FIPS mode is the default mode after initialization. The module can
enter the FIPS mode by calling a specific function that switches to FIPS
mode. This transition is allowed only if the module is in the OK state and
no allocated crypto object instances exist, as depicted in Figure 1.

Figure 1 – Transition between Different Modes of Operation

When the module is in FIPS mode, the following functional changes will
occur:

• Only FIPS-approved algorithms are available

• Private keys can be exported only in encrypted form

© Copyright 2004 SSH Communications Security Corp Page 14 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

3.1. Crypto Officer Guidance

Before any cryptographic processing can be performed, the Crypto Officer
must initialize the module by calling the ssh_crypto_library_initialize
function. During initialization, the module enters the self-test state and
performs the power-up self-tests. If the self-tests pass, the module enters
the OK state. At this point, the ssh_crypto_library_initialize function has
been successfully executed and the SSH_CRYPTO_OK return value is
returned by the module to notify the Crypto Officer. Since non-FIPS mode
is the default mode after initialization, the Crypto Officer must switch the
current mode to FIPS mode by calling the
ssh_crypto_set_certification_mode and specifying that FIPS mode is the
mode to switch to. If the switch was successful, the module will notify the
Crypto Officer by returning the SSH_CRYPTO_OK return value.

The User guidance described below also applies to the Crypto Officer.

3.2. User Guidance

The User must verify that the current mode is FIPS mode by calling the
ssh_crypto_get_certification_mode. If the function returns “FIPS mode”,
the User can proceed.

When the module is in FIPS mode only FIPS-approved algorithms are
allowed to be used. To help Users identify these algorithms, the User can
call type-specific functions to list FIPS-approved algorithms implemented
by the module. The User can also use type-specific functions to query
whether a specific algorithm is FIPS-approved.

The User can explicitly call the ssh_crypto_library_self_tests function to
verify that the module is functioning correctly. If all self-tests pass, the
module notifies the User by returning the return value SSH_CRYPTO_OK.

To prevent the disclosure of CSPs, the User should zeroize the CSPs
when they are no longer required. CSPs can be zeroized by calling a type-
specific free function. Alternatively, the ssh_crypto_library_zeroize
function can be called to zeroize all existing crypto objects and CSPs.

© Copyright 2004 SSH Communications Security Corp Page 15 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

4. APPENDIX A – FUNCTIONS
This appendix contains a list of the functions provided by the module. The
function set is divided into the different services provided by the module,
as shown in Table 6.

Service Functions
Initialize
Cryptographic
Library

ssh_crypto_library_initialize

ssh_crypto_get_certification_mode Certification mode
management ssh_crypto_set_certification_mode
Perform self-tests ssh_crypto_library_self_tests
Return state of
module

ssh_crypto_library_get_status

Free strings
allocated by
module

ssh_crypto_free

Convert returned
error to user-
printable strings

ssh_crypto_status_message

Get Cryptographic
Library version

ssh_crypto_library_get_version

Get progress
information

ssh_crypto_library_register_progress_func

ssh_random_add_entropy
ssh_random_add_light_noise
ssh_random_allocate
ssh_random_enable_fips_continuous_checks
ssh_random_free
ssh_random_get_bytes
ssh_random_supported
ssh_random_get_supported
ssh_random_is_fips_approved

Generate random
numbers using the
chosen PRNG

ssh_random_name
ssh_random_add_noise
ssh_random_get_byte

Generate random
numbers using the
internal RNG ssh_random_stir

ssh_hash_allocate
ssh_hash_asn1_oid
ssh_hash_digest_length
ssh_hash_duplicate
ssh_hash_final
ssh_hash_free
ssh_hash_get_supported

Compute Hash

ssh_hash_input_block_size
© Copyright 2004 SSH Communications Security Corp Page 16 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

ssh_hash_is_fips_approved
ssh_hash_name
ssh_hash_reset
ssh_hash_supported
ssh_hash_update
ssh_mac_allocate
ssh_mac_final
ssh_mac_free
ssh_mac_get_block_length
ssh_mac_get_max_key_length
ssh_mac_get_min_key_length
ssh_mac_get_supported
ssh_mac_is_fips_approved
ssh_mac_length
ssh_mac_name
ssh_mac_reset
ssh_mac_supported

Compute MAC

ssh_mac_update
ssh_cipher_ get_supported
ssh_cipher_supported
ssh_cipher_is_fips_approved
ssh_cipher_name
ssh_cipher_allocate
ssh_cipher_get_block_length
ssh_cipher_get_iv
ssh_cipher_set_iv
ssh_cipher_get_iv_length
ssh_cipher_get_key_length
ssh_cipher_get_max_key_length
ssh_cipher_get_min_key_length
ssh_cipher_get_has_fixed_key_length
ssh_cipher_transform
ssh_cipher_transform_with_iv

Encrypt/decrypt
using symmetric
algorithms

ssh_cipher_free
ssh_private_key_copy
ssh_private_key_define
ssh_private_key_generate
ssh_private_key_is_fips_approved
ssh_private_key_derive_public_key
ssh_private_key_free
ssh_private_key_get_info
ssh_private_key_name
ssh_private_key_select_scheme
ssh_public_key_name

Create and
manipulate public
and private keys

ssh_public_key_is_fips_approved

© Copyright 2004 SSH Communications Security Corp Page 17 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

ssh_public_key_copy
ssh_public_key_define
ssh_public_key_free
ssh_public_key_get_info
ssh_public_key_get_supported
ssh_public_key_select_scheme
ssh_pk_import Import and export

private keys,
public keys,
groups, and
randomizers

ssh_pk_export

ssh_private_key_derive_signature_hash
ssh_private_key_max_signature_input_len
ssh_private_key_max_signature_output_len
ssh_public_key_derive_signature_hash
ssh_private_key_sign_async
ssh_private_key_sign_digest_async
ssh_public_key_verify_async

Sign and verify
digital signatures

ssh_public_key_verify_digest_async
ssh_pk_group_copy
ssh_pk_group_free
ssh_pk_group_generate
ssh_pk_group_get_info
ssh_pk_group_select_scheme

Generate and
manipulate
algebraic groups

ssh_public_key_get_predefined_groups
ssh_pk_group_generate_randomizer Precompute

randomizers for
groups ssh_pk_group_count_randomizers

ssh_private_key_precompute
ssh_public_key_precompute

Precompute data
for private key,
public key or
group ssh_pk_group_precompute

ssh_pk_group_dh_setup_max_output_length
ssh_pk_group_dh_agree_max_output_length
ssh_pk_group_dh_setup_async
ssh_pk_group_dh_secret_free

Establish shared
secret using Diffie-
Hellman

ssh_pk_group_dh_agree_async
Zeroize
Cryptographic
Library

ssh_crypto_library_zeroize

Uninitialize
Cryptographic
Library

ssh_crypto_library_uninitialize

Table 6 – Functions provided by the Module

© Copyright 2004 SSH Communications Security Corp Page 18 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Table 6 includes all functions that provide services available in a FIPS
mode of operation. In addition to the functions listed in Table 6, the
module has the functions listed in Table 7. When in FIPS mode, the
functions in Table 7 no longer provide useful services, but rather, always
output the return values detailed below.

Functions Return Value
ssh_private_key_get_info This function allows you to query

public parameters, but not secret
parameters (P, Q, D and U for
RSA, X for DSA). For the latter
case, the function will fail and
return
SSH_CRYPTO_UNSUPPORTED

ssh_private_key_create_proxy SSH_CRYPTO_UNSUPPORTED
ssh_public_key_create_proxy SSH_CRYPTO_UNSUPPORTED
ssh_dh_group_create_proxy SSH_CRYPTO_UNSUPPORTED
ssh_proxy_key_get_key_handle SSH_CRYPTO_UNSUPPORTED
ssh_proxy_key_rgf_decrypt SSH_CRYPTO_UNSUPPORTED
ssh_proxy_key_rgf_encrypt SSH_CRYPTO_UNSUPPORTED
ssh_proxy_key_rgf_sign SSH_CRYPTO_UNSUPPORTED
ssh_proxy_key_rgf_verify SSH_CRYPTO_UNSUPPORTED
ssh_public_key_encrypt_async SSH_CRYPTO_UNSUPPORTED
ssh_public_key_max_encrypt_input_len Since asymmetric

encryption/decryption is not
supported, the function will return
zero

ssh_public_key_max_encrypt_output_len Since asymmetric
encryption/decryption is not
supported, the function will return
zero

ssh_private_key_decrypt_async SSH_CRYPTO_UNSUPPORTED
ssh_private_key_max_decrypt_input_len Since asymmetric

encryption/decryption is not
supported, the function will return
zero

ssh_private_key_max_decrypt_output_len Since asymmetric
encryption/decryption is not
supported, the function will return
zero

ssh_pk_provider_register SSH_CRYPTO_UNSUPPORTED
Table 7 – Functions that should not be used

© Copyright 2004 SSH Communications Security Corp Page 19 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

© Copyright 2004 SSH Communications Security Corp Page 20 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

5. APPENDIX B – ACRONYM LIST
AES Advanced Encryption Standard
ANSI American National Standards Institute
CBC Cipher-Block Chaining
CFB Cipher Feedback
CSE Communications Security Establishment
CSP Critical Security Parameter
CTR Counter
DES Data Encryption Standard

 DSA Digital Signature Algorithm
 ECB Electronic Codebook

EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
FCC Federal Communication Commission
FIPS Federal Information Processing Standard
IV Initialization Vector
KAT Known Answer Test
MAC Message Authentication Code
NIST National Institute of Standards and Technology
OFB Output Feedback
PKCS Public Key Cryptography Standard
PRNG Pseudo Random Number Generator
RAM Random Access Memory
RNG Random Number Generator
RSA Rivest Shamir and Adleman
SHA Secure Hash Algorithm

	1. Introduction
	1.1. Purpose
	1.2. References
	1.3. Document Organization

	2. SSH CRYPTOGRAPHIC LIBRARY SOFTWARE VERSION 1.2.0
	2.1. Overview
	2.2. Cryptographic Module
	2.3. Module Interface
	2.4. Roles and Services
	2.5. Physical Security
	2.6. Cryptographic Key Management
	2.6.1. Key Generation
	2.6.2. Key Establishment
	2.6.3. Key Entry and Output
	2.6.4. Key Storage
	2.6.5. Key Zeroization

	2.7. Self-Tests
	2.8. Design Assurance
	2.9. Mitigation of Other Attacks

	3. Secure Operation
	
	3.1. Crypto Officer Guidance
	3.2. User Guidance

	4. Appendix A – Functions
	5. Appendix b – Acronym List

